

ALERT Meeting

AHDC simulation

August 21, 2025

Felix Touchte Codjo

PhD student at UPSaclay, JLab Graduate User felix.touchte-codjo@ijclab.in2p3.fr

AHDC signal

- A Hyperbolic Drift Chamber
- 3026 aluminium wires; 576 sense wires
- gaseous detector

AHDC detection cell

signal generation

sense wire connected to the HV ~ 1400 V

field wire wire connected to the LV

charged particle electronic avalanche

Electric field Drift of electrons AHDC signal

Example of real AHDC signals

Run 22712

From step points calculated on Geant4 to non continuous deposited energy over the time

- 1) We use (2) to compute the distance of of the i-th point / step to the wine. Is doca.
- 2) We use an empirique distance to time function: $f(x) = 7x + 7x^2 + 4x^3$
- 3) At each step i, we associate the time: $t_i = f(d_i)$.

We change all <u>punctual distribution</u> to a <u>deposited energy over integrated over the time</u>

We change all <u>punctual distribution</u> to a <u>deposited energy over integrated over the time</u>

new trax

can be very

- We have 2 free parameters :
 - \circ scale σ parameter of the landau distribution
 - delay added to the resulting signals
- We can use real data to calibrate these parameters
- But we know real data are corrupted by the noise

We will only looked at waveforms associated to tracks outcoming from elastics event

- Study run 22712, D2 target
- Compute the kinematics variables and apply cuts

 $3.46 < W2 < 3.8 \text{ GeV}^2$

 $|\Delta \phi$ - peak | < 20 deg

- pT electron vs deposited energy (sum ADC) of the track
- Select proton that correspond to
 - 1000 < Sum ADC < 3500
 - 230 < pT < 260 MeV

- pT electron vs deposited energy (sum ADC) of the track
- Select proton that correspond to
 - 1000 < Sum ADC < 3500
 - 230 < pT < 260 MeV 0

- Current AHDC reconstruction not good for the moment
- From electron kinematics to expected tracks

Elastics events / Proton to simulate

- Simulation calibration
 - \triangleright Estimation of σ

$$T_{landou} = \frac{FWHM}{4.017} = \frac{T_0T}{4.017}$$

 \triangleright We deduct μ

The delay is estimated by the delay to

SIMU

DATA

SIMU

We have a hidden cut on simulation because of the wfType process that give non standard value (time = -9999) when the signal adcMax is lower that 200 (the flatness in ModeAHDC).

https://github.com/ftouchte/coatjava/blob/bd1e2fdfe146095da0f2b3d18def2b857e8892a8/common-tools/clas-detector/src/main/java/org/jlab/detector/pulse/ModeAHDC.java#L42

It is actually the first cut: that may explain the exclusion.

https://github.com/ftouchte/coatjava/blob/bd1e2fdfe146095da0f2b3d18def2b857e8892a8/common-tools/clas-detector/src/main/java/org/jlab/detector/pulse/ModeAttpc/j 21ava#L178

Elastic waveforms

Simulated waveforms

Simulated waveforms (before)

Conclusion

- We use elastics data to calibrate some free parameters in simulation
- New feature in simulation
 - direct use of the t0 in simulation
- The current difference between real data and simulation
 - bad t0 calibration
 - noise level
 - decoding biais
 - elastics cuts biais